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In this paper, the finite element method is used to obtain deformations of a rock tunnel.  More than 
3,000 numerical simulations and calculations were carried out. The analysis of this results has 
allowed to achieve mathematical formulations and graphs, to obtain in advance support monitored 
displacements in tunnelling construction, so they can be predicted before excavation and 
supporting woks. The application of the presented formulations and charts will aid engineers to 
control tunnel monitoring, reducing decision time when problems occur. 
The analysis is limited to cases involving elastic behaviour of the terrain for tunnels of average to 
good quality in rock, and to excavation sections of average or smaller dimensions for road tunnels.  
The results show that, in all cases, mathematical expressions to obtain induced displacements 
around tunnel excavations, have similar pattern than Kirsch (1898) expressions for circular 
excavations. 
As corollary of the achieved results, a method to estimate in situ natural geostress ratio K0=σh/σv , 
by means of convergence measurements, is presented. 

 
In diesem Beitrag wurden die Verschiebungen eines Tunnels durch die Methode de Finiten 
Elemente berechnet. Mehr als 3000 numerische Simulationen und Berechnungen wurden 
ausgeführt. 
Die Analyse dieser Resultate hat es ermöglicht, mathematische Formeln und Grafiken zu 
entwickeln, die zur Voraussage der Verschiebungen in Tunnel dienen, auch unter Betrachtung der 
verschiedenartigen Abstützungen. So können die Verschiebungen vor den Erdarbeiten und dem 
Bau der Abstützung abgeschätzt werden. Die  abgeleiteten Formeln und Grafiken werden vor 
allem einen grossen Dienst für Ingenieure bei der Mithilfe zu zeitsparenden Entscheidungen im 
Tunnelbau und bei der Tunnelkontrolle leisten. 
Die analysierten Fälle sind auf eine elastische Modellierung des Baugrunds beschränkt, sowie auf 
eine mittlere bis gute Qualität des Felsens und auf die Aushebung von Abtragungsabschnitten 
mittlerer oder geringer Grösse für den Strassenverkehr. 
Die Resultate zeigen, dass in allen Fällen die hergeleiteten Formeln zur Berechnung der durch den 
Tunnelbau verursachten Verschiebungen um den Tunnel die gleiche mathematische Struktur 
haben wie diejenigen von Kirsch (1898) für kreisförmigen Bodenaushub. 
Als Korollarium der ausgeführten Berechnungen wird eine Methode zur Abschätzung der 
vorherrschenden in situ Geospannungs-Verhälniss K0=σh/σv angegeben, die von den  Messungen 
der Verschiebungen im Tunnel ausgeht. 

 
Dans cet article, la méthode des éléments finis est utilisée pour obtenir les déformations d’un 
tunnel creusé dans la roche. Plus de 3000 simulations numériques et calculs ont été effectuées. 
L’analyse de ces résultats a permis de définir des modèles mathématiques et des abaques afin de 
prédire, avant l’excavation et les travaux de soutènement, les déplacements auscultés pendant la 
construction du tunnel. L’application de ces modèles et abaques permettra donc aux ingénieurs de 
contrôler les déplacements durant l’auscultation du tunnel et de réduire le temps de décision 
lorsque des problèmes surviennent. 
L’analyse est limitée au cas du comportement élastique du terrain pour des tunnels creusés dans de 
la roche de moyenne a bonne qualité, et à de sections d’excavation de petites à moyennes 
dimensions pour des tunnels routiers. 
Les résultats montrent que, dans tous les cas, les expressions mathématiques permettant d’obtenir 
les déplacements induits autour des excavations de tunnel, présentent des similitudes avec celles 
de Kirsch (1898) pour des excavations circulaires. 
Comme corollaire aux résultats obtenus, une méthode pour estimer le rapport des contraintes 
géostatiques in situ K0=σh/σv au moyen de mesures de la convergence, est exposée. 
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Introduction 

In determining the perimeter movements of a tunnel, 
numerical methods simulating the stresses and 
deformations around the excavation are often used.  
Typically, a finite element model is used to handle the large 
volume of data and generated results. 
 
The analysis by finite element models of tunnels in rock 
having a moderate overburden is a well-defined process, 
especially for tunnels driven in homogeneous terrain.  For 
such conditions, this paper established some numerical 
expressions that directly provide perimeter movements of 
tunnels for the most commonly used tunnel sections.  The 
methodology used to determine the obtained expressions 
required the performance of many  calculations in order to 
consider the cases that are most frequently encountered in 
tunnel design and construction.  It has also been possible to 
verify that these expressions are similar to existing 
expressions obtained analytically for the case of a circular 
tunnel in a rock mass with homogeneous stress. 
 
The obtained expressions can be used to easily determine 
the expected deformations in a given tunnel within the 
scope of cases noted above, i.e., circular tunnels in 
homogeneous rock, with moderate overburden.  Using these 
expressions can eliminate the need to perform complicated 
numerical analyses to determine tunnel deformations.  
Instead, when the back-analysis interactive process is 
carried out, the parameters of the rock can be deduces 
starting from the results of the tunnel measurements, and 
using the expressions and graphics presented in this paper. 
 
Another interesting contribution of the work carried out is 
the ability to obtain a simple ratio between the coefficient 
of the horizontal and diagonal convergences measured in a 
tunnel and the value of the rock coefficient K0, that is, the 
relation between horizontal stresses at a point in the rock 
mass.This parameter is difficult to measure directly. 
 

 

Analytical Solution 

The differential equations of elasticity, applied to the case 
of tunnel excavation in an elastic medium, can be solved 
analytically only in certain carefully defined cases.  The 
most simple case is the one corresponding to a circular 
tunnel in an infinite medium and loaded with an initial 
stress σ0 equal in all directions, that is, with coefficient 
K0=1 and without considering the increase in stresses with 
the depth due to the terrain weight.  The solution to this 
problem was determined by Kirsh (1898), and is the one 
expressed in the following way in reference to the relative 
movement in the radial direction to the tunnel perimeter 
area: 
 

 uR = [(1+ν)/E]*σ0*R    (1) 

 
where: 

 
uR = Radial movement of the perimeter area of the tunnel 
E = Rock mass deformation modulus 
ν= Rock mass Poisson's ratio 
σ0 = Initial stress of the rock 
R = Tunnel radius 
 
We can simply deduce from expression (1) that the radial 
movement in a tunnel, or the convergence, is directly 
proportional to the tunnel radius and the initial stress status 
and inversely to the rock mass deformation modulus.  In 
other words, the convergences of a tunnel are greater for 
larger tunnels at greater depths, and lesser with a poorer 
quality of rock. 
 
Subsequently, these results were applied in general for the 
case of non-isotropic initial stress (Kirsch, 1898) and for an 
elliptical-shaped tunnel (Inglis, 1913). An analytical 
solution in displacements has been developed for the 
circular tunnel with any K0  obtained by Pender (1980). 
 
For the case of radial movement in the perimeter area of the 
tunnel, the expression is: 
 
uR = [(1+ν)/E]*σ0*R*[1/2(1+ K0)-3/2(1-K0)(1-ν)*cos2θ] (2) 

 
where θ �shows the point at which the movement is 
measured, and  K0 is the existing relation between the 
horizontal and vertical stresses on each point.  Making  θ=0 
and  θ=π/2 in (2) gives, respectively, the horizontal 
convergence and roof settlement of the tunnel.  If we call 
the radial movement obtained for the case of K0 = 1 
obtained from (1) basic movement, the following 
expressions remain for the roof settlement and the 
horizontal convergence: 
 
RS = u0*[1/2(1+ K0)+3/2(1-K0)(1-ν)]  (3) 

Ch = u0*[(1+ K0)-3(1-K0)(1-ν)]   (4) 

where u0 is obtained from: 
 

u0 = [(1+ν)/E]*σ0*R    (5) 

Note that in order to obtain the horizontal convergence Ch 
in expression (4), the value which is directly obtained from 
(2) has been multiplied by 2, since the measured value in-
situ is actually the relative movement between both sides of 
the tunnel, so by symmetry it is twice the displacement of 
each one of them. 
 
In both cases, the movements are expressed as the product 
of the basic movement u0 multiplied by an anisotropy 
coefficient, the latter which appears due to the non-isotropic 
distribution of the initial stresses around the peripheral area 
of the tunnel.  We will represent this anisotropy coefficient 
with the Greek letter kappa κ, which is a function of K0, ν 
and the considered movement. 
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Designating ui to any of the movements that we may 
consider in the perimeter area of the circular tunnel, 
whether by the displacement of a point, or by the relative 
movement between two of them, we can express in general, 
that: 
 
ui = u0* κi(K0,ν)     (6) 

where κi is the corresponding anisotropy coefficient to the 
considered movement. 
 
In the case of the horizontal convergence and roof 
settlement (expressions (3) and (4)), in Figure 1, the value 
of κ �has been represented as a function of ν and K0.  In both 
cases a set of lines appears, and then it passes by the point 
of unit ordinate when  K0=1.  That is, when K0=1 there is 
no influence of ν on the value of κ, and the movement 
produced is that which has been denominated basic u0. 
 
We should also note that there is a certain value for K0 
which cancels out the roof settlement, and another value for 
K0 which cancels out the tunnel's horizontal convergence 
for a given ν coefficient.  From (3) and (4) we can obtain 
these two values for K0 according to the following 
expressions: 
 
K0(RS  = 0) = (3ν-4)/(3ν-2)   (7) 

K0(Ch = 0) = (3ν-2)/(3ν-4)   (8) 

Note that they are inverse values, that is, if we call the 
value for K0 which cancels the tunnel roof settlement K0 
critical or KCR, then its inverse 1/KCR cancels out the 
horizontal convergences of such a tunnel. 
 

Numerical Solution 

Expression (6) is generally within the cases involving 
elastic behavior of the terrain for tunnels considered up to 
now, and can be analytically obtained for the simplified 
case of a circular tunnel without considering the weight of 
the terrain, that is, with uniform initial stresses throughout 
the rock mass. 
  

By means of the finite element analysis described below, a 
generalization of (6) has been carried out for cases nearer to 
reality, that is, tunnels of shapes not necessarily circular, 
taking into consideration the  weight of the terrain and the 
variation of the initial stress status with the depth.  Using 
different models of finite elements, various numerical 
calculations have been made.  It has  been verified that the 
expression that is obtained for the movements of the 
perimeter area of the tunnel is formally the same as 
expression (6). 
 
The analysis was carried out through the resolution of 7200 
different models of finite elements, using the ANSYS 
commercial software version 5.2.  Figure 2 shows one of 
the models of elements used. With these models, we 
intended to include the most common range of variation of 

each of the parameters that pertain to the problem.  The 
parameters which have been considered as variables are 
described below, and are summarized in Table I. 
 
 
 
 
 
Table I:  Variation range of parameters 
 
PARAMETER RANGE 
Excavation section 20 - 60 m2 
Elastic Modulus  5 – 50 GPa 
Poisson's ratio 0.15 - 0.35 
Coefficient K0 0.5 - 2.5 
Mass density 2400 - 2600 Kg/m3 
Overburrden 50 - 250 m 
Tunnel shape Circular, horseshoe and broad 
 
 

Tunnel Shape and Dimensions 

Four different tunnel shapes have been calculated, which 
are the most common in roads, railroads or hydraulic 
works: circular tunnel, horseshoe-shaped tunnel and 
semicircular tunnel.  A different set of expressions has been 
obtained for each one of these four shapes, as described in 
section 4. 
 
The tunnel dimensions have been varied by means of the 
excavation surface S, instead of by the radius R. In this way 
the non-circular shapes have been more appropriately 
considered. The excavation section has been varied 
between 20 and 60 m2, as more representative limits in half-
section excavations or first stage sections. In any case, the 
obtained results are applicable to greater sections if they are 
maintained within the elastic range. 
 

Depth and Stress Status 

 
The models of finite elements which were used comprise an 
area of approximately three diameters around the 
excavation.  In all the cases the terrain surface remains out 
of the model, that is, shallow tunnels have not been 
considered. We have considered depth values between 50 
and 250 meters over the center of gravity  of the section. 
  

In the model that we have used, the initial stresses prior to 
the excavation were determined by the following 
expressions: 
                           

σV = ρ*g*h     (9) 

σH = K0*σV     (10) 

where σV and σH are the vertical and horizontal stresses, 
respectively, ρ is the terrain mass density, g the 
gravitational acceleration, h the depth at each point, and K0 
the ratio between horizontal and vertical stresses.  The 
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expression for the vertical stress is the hypothesis most 
commonly used, and has been cited by Herget (1988), Hoek 
& Brown (1980) and Wittke (1990) among others. 
 
The calculation input parameters are the density, which has 
been considered between 2400 and 2600 Kg/m3, and the K0 
coefficient, for which the values between 0.5 and 2.5 have 
been used. 

Terrain Deformability 

The most limited parameter is the terrain Poisson's ratio, ν, 
which has been varied between 0.15 and 0.35. 
 
In reference to the elastic modulus E, we have chosen to 
use values between 5 and 50 GPa. This range excludes poor 
quality rocks, which would require a different treatment 
because in poor quality rock some plastification may appear 
around the tunnel as a consequence of the excavation. 
  
In all of these cases, a purely elastic behavior of the rock 
has been assumed, which is nearly approximate to the case 
of tunnels of average or small dimensions and in rock 
mediums of average to good quality. 
 

Obtained Expressions 

Movement Determination 

Within all the possible movements that can be measured in 
the perimetric area of a tunnel, the movements for which a 
determining expression is given are the following:  the roof 
settlement, the horizontal convergence and the diagonal 
convergence.  For all of them, the expression obtained is 
the following: 
 

ui = u0*κi(K0,ν, shape)    (12) 

with: 
 u0 = [(1+ν)/E]*γ*H*√(S/π)   (13) 

where: 
 
ui:  any of the three mentioned movements 
κi: the anisotropy coefficient, which depends on the 
considered movement, the K0 coefficient, Poisson's ratio 
and the tunnel shape 
u0:  the basic movement, as expressed in (13), where each 
parameter represents: 
E:  Rock mass elastic modulus 
ν:  Rock mass Poisson's ratio 
γ:  Rock mass specific weight,  γ=ρ*g 
H:  Depth of the gravity center of the tunnel section 
S:  Cross-section area of the tunnel excavation 
 

Figures 1, 2,  and 3 allow the graphic determination of κ for 
the different tunnel shapes which have been studied. 
  

These graphics reflect the important influence that the value 
of K0 has on the tunnel deformations. When K0 increases, 
the roof settlements tend to decrease and the horizontal 

convergences increase, while the diagonal convergences are 
produced as a composition of the other two movements. 
 
The scope of validity of these numerical determinations is 
limited by the starting suppositions used in the numerical 
models.  In general, we can state that expression (12) is 
valid when the behavior of the terrain is maintained in the 
elastic range and the rock mass is sufficiently 
homogeneous.  The following scope of validity should be 
noted: 
 
-  Tunnel of any of the four shapes studied or other 

similar ones 
- Small or average excavation sections (<80-100 m2), so 

that the behavior of the mass could be assumed as 
elastic 

- Moderate depth, so that there is no surface proximity 
influence on one hand, and no plastification 
phenomena or rock swelling on the other hand 

- Average or good quality rock, given from the 
beginning an RMR higher than 40, so that its behavior 
could be considered elastic 

- Terrain with approximately homogeneous behavior in 
all directions. 

 
Consideration of the face distance 

The generic expression (12) provides the total movement 
that has occurred, starting from the initial status, prior to the 
tunnel excavation, until the conclusion of it.  Nevertheless, 
if we take into account that part of the movement is 
produced before making the first reading of the 
convergences, the movement measured is never the full 
quantity, but merely a certain fraction of it.  This fraction 
depends on the face quality and on the face distance of the 
first reading, and can be obtained as the product of the total 
movement multiplied by the parameter (1-λ), as defined by 
Panet & Guenot (1982). 
  

In such a case, the expression of the measured movements 
will remain as follows: 
  

ui = u0*κi*(1-λ)     (14) 

where parameter (1-λ) is obtained from Figure 7, as a 
function of the distance to the face from the convergences 
measurement section when it was first measured.  Of all the 
curves mentioned by Panet & Guenot, in this case the one 
corresponding to Ns = 1 should be used, which is the one 
for good quality terrain with no apparent plastification. 
 

Comparison with the analytical expression 

In the case of the circular tunnel, the results derived from 
expression (12) and Figure 3 can be easily compared to the 
analytical expressions (3) and (4). The following 
differences and analogies can be pointed out: 
 
- In both cases the value of κ depends on K0 and on ν, 

and in both cases they have the same influence:  with a 
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greater K0, lesser roof settlements and greater 
horizontal convergences;  and with a greater ν, lesser 
influence of K0. 

- In both the analytical and the numerical 
determinations, there is a certain K0 in which there is 
no influence of ν in the value of the anisotropy 
coefficient κ, that is, the represented straight lines 
always pass by the same point.  In the circular tunnel, 
this point corresponds to K0 = 1. 

- The values obtained by the application of expression 
(12) for the roof settlement give movements somewhat 
greater than the ones obtained in expression (3). This 
result may be due to the model used and to the 
different distribution of initial stress. 

- Figure 3 shows that there is a critical value for K0 
which cancels out the roof settlement, and that the 
inverse of such a value cancels out the horizontal 
convergence.  This circumstance is also deduced from 
the analytical expressions (7) and (8), although the 
values for KCR are slightly different. 

 
Ratio between two convergence measurements 

In expression (14) we can calculate the existing relation 
between any two different tunnel movements.  As u0 and λ 
are equal for the movements measured at the same moment, 
we have the following: 
         

ui/uj = κι/κj     (15) 

Therefore, we can state that the relation existing between 
two tunnel movements measured at any time is equivalent 
to the ratio of the corresponding aniostropy coefficients. 
 

This result is of great interest for obtaining the value of the 
parameter K0 for the rock mass starting from the tunnel 
monitoring measurements.  In fact, we can estimate the 
ratio of the anisotropy coefficients for the cases of 
horizontal and diagonal convergences, and to represent it as 
a function of K0 and ν. 
 
In Figures 4, 5 and 6, graphics are shown for each type of 
excavation analyzed. We can conclude that measuring the 
horizontal and diagonal convergences in a tunnel, and 
calculating the relation between them, these graphics allow 
us to determine the coefficient K0 of the rock mass for a 
given value of ν. 
 

Model errors 

In order to estimate the errors inherent in the model used, 
derived from the problematic numerical resolution itself, in 
some cases a more exact model has been used, with the 
model boundary most distant from the excavation, and with 
a much more dense discretization. 
  

The results of these more exact calculations, compared with 
the ones from the initial model, show that the horizontal 
and diagonal convergences are practically the same, while 

there are changes in the roof settlements. The error 
increases as the depth increases, reaching a maximum of a 
15% error, and obtaining lesser movements in the more 
exact calculations. 
 
Consequently, the roof settlements that are shown in this 
paper could be greater than the real values, but in any case, 
the difference would not be greater than 15%. 

Conclusions 

The results have been shown in graphic form in which we 
note the remarkable influence of coefficient K0 of the rock 
mass and of Poisson's ratio ν, for the determination of the 
anisotropy coefficient κ as well as for the determination of 
deformations in the rock of the perimetric area.  Through 
the ratio between horizontal and diagonal convergences 
measured during the construccion of a tunnel, we can 
determine the value of parameter K0 of the rock mass. 
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Appendix 1 (Graphics and charts) 

 
FIGURE 1: κκκκ (CIRCULAR TUNNEL) 

 

 

 
 
 
 
 
 
 
 

 

FIGURE 2: κκκκ (HORSE-SHAPE TUNNEL) 
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FIGURE 3: κκκκ (BROAD TUNNEL) 

 

 
 

 

 

 
 
 
 
 
 
 

 
FIGURE 4: K0 (CIRCULAR TUNNEL) 

 

 
 

FIGURE 5: K0 (HORSE-SHAPE TUNNEL) 

 
 

 
FIGURE 6: K0 (BROAD TUNNEL) 
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